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Instruction tuning: the difference between GPT-3 and ChatGPT

glant training corpora
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Computer vision needs more post-pretraining

(raw) LLMs

(e.g. GPT-3)

X requires industrial compute

X model is relatively useless

1st-gen Visior

Foundation Models

(e.g. DINOG, CLIP)

X requires industrial compute

model is already useful

Fundamental
AI Lab

Instruction tuning

Chat LLMs -

(e.g. ChatGPT)

requires fraction of compute

makes LLM useful, customisable, better

Post-pretraining

2nd-gen Vision
Foundation Models

(e.g. Neco, TimeTuning)

requires fraction of compute

makes vision model even better,
across various tasks



Post-pretraining




Post-pretraining

!"Eﬂ Fundamental
h:ﬁ AI Lab




Post-pretraining

Fundamental
AI Lab




Post-pretraining

Fundamental
AI Lab




Fundamental
AI Lab




T < S

v
N
=¥

a oo ULESUE M

- ﬁ
p— rengt: n e,

|
—_—

- = "'l! Ny -

~ B L)

- | >

—Ll .
8 [ e
e— ”..-3 ‘

. A"
- . T .
o ,'.W-“-"'M
: "-6; ~

S

NeCo: Improving DINOvZ2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency.

Valentinos Pariza, Mohammadreza Salehi, Gertjan Burghouts, Francesco Locatello, Yuki M. Asano.
arxiv 2024



How semantic are patch representationss

Qualitative results in DINOv2

(Drawings / Animals)

1—‘& Fundamental Oquab et al. DINOv2: Learning Robust Visual Features without Supervision. TMLR 2023
f AI Lab Darcet et al. Vision Transformers Need Registers. ICLR 2024



How semantic are patch representations?

WhICh patch from the whole dataset is the closest?

Qualitative results in DINOv2

But often...

(Drawings / Animals)
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How semantic are patch representations?

WhICh patch from the whole dataset is the closest?

Qualitative results in DINOv2

But often...

(Drawings / Animals)

with SOTA DINOvV2-R model

1—‘& Fundamental Oquab et al. DINOv2: Learning Robust Visual Features without Supervision. TMLR 2023 ,
E AI Lab Darcet et al. Vision Transformers Need Registers. ICLR 2024




|[dea of Patch Nearest Neighbor Consistency: intuitive to us

Given a query patch of a right shoulder, top neighbors should be in the following order:

(1) All Right Shoulder Patches, (2) All Left Shoulder Patches, (...) (3) Everything Else

Query Patch

Example Patches

!"E‘j Fundamental
E AI Lab



PaNeCo: Patch Nearest neighbor Consistency

Teacher ROI Align
Encoder i —
Oy (11, 72)
A

\_  Batch Images J

Student
ROI Ali
Encoder . —

(7'1, 7-‘2)
F

‘ glinizgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024
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Teacher ROI Align
Encoder i
Oy (11, 72)
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\_ Batch Images
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Encoder

ROI Align
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PaNeCo: Patch Nearest neighbor Consistency

Teacher ROI Align
Encoder <.
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\_ Batch Images
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Encoder
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PaNeCo: Patch Nearest neighbor Consistency

Teacher ,, e N
ROI Alien [ [T
Encoder 5 117 t:m .

Differentiable
\_ Sorting )

\_ Batch Images

N ' Student () )
2 or o0 ROI Align H:H
Encoder il W o
Cb S (Tl ; 7"2) - Differentiable

\_ Sorting )
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PaNeCo: Patch Nearest neighbor Consistency

e A
ROI Align [l I
Encoder = 11 — H:u

Differentiable
\_ Sorting )

l

,—-——————————————-————————-—————————————-\

Forcing consistent
neighbor ordering

\_ Batch Images

-
W O R R R R R R TR T R R TR B TR B TR TR SRR TR SRR R B TR R T T T TR R T R SRR TR R R R R e e

N | Student [ N /ia
b cn

2 ROI Align tf:‘—‘ =

. Encoder - — -

Cb S (Tl ’ 7"2) - Differentiable -

\_ Sorting ) . o
F. -

‘ glinizrgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 13
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Evaluation 1: Visual in-context segmentation via dense NN retrieval

Patch Features from

Images Encoded images Query Patch
— each Dataset Image oy
— *
1
- - N - Backbone
Backbone R -V - f2 f2
3| f4 | e L2
J J ,J Compare and find

~  neighbors with
query patch.

AI Lab

Fundamental Towards In-context Scene Understanding. Ivana Balazevi¢, David Steiner, Nikhil Parthasarathy, Relja Arandjelovic, Olivier J. Hénaff. NeurIPS 2023



Evaluation 1: Visual in-context segmentation via dense NN retrieval

Images

Patch Annotations

O N

Fundamental
AI Lab

Backbone

Encoded images

Patch Features from
each Dataset Image

—+
f1 | f2
f3 | f4

2] [T
/| J

Patch Labels from
each Dataset Image

T

Query Patch

L_l Backbone

Compare and find
neighbors with
query patch.

Accumulate
the labels of » shoulder
the neighbors

Towards In-context Scene Understanding. Ivana Balazevi¢, David Steiner, Nikhil Parthasarathy, Relja Arandjelovic, Olivier J. Hénaff. NeurIPS 2023
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In-context scene understanding benchmark

Pascal VOC In-Context Learning Evaluation

380
75 -
70 -
0D -
2 60
s 55
m—pe=  OQUI'S
50 - weoe= DINOV2R
45 - ==p== (CrlBo
=—e== | eopart
40 - wege TimeT
1/128 1/64 1/8 1/1
Fraction of Training Data
Fundamental

AI Lab

NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024
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In-context scene understanding benchmark

Pascal VOC In-Context Learning Evaluation

o5 matches performances of
| DINOV2-R with ~15x less data

g OUI'S
50~ —o— DINOV2R
45 - ==g== CriBo
=== | eopart
40 - === TimeT
1/128 1/64 1/8 1/1

Fraction of Training Data

‘ glinizrgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 17



In-context scene understanding benchmark

Pascal VOC In-Context Learning Evaluation ADE20K In-Context Learning Evaluation
80 - _
40 m—gpe=  OQUTIS
7D - === DINOV2R
20 - 30 { =m=e== CrlBo
=—e== | eopart
65 - 304 == TimeT
2 60 2 .
& 55- s
m—ge=  OQUTIS
50 - weo= DINOV2R 201
45 - ==p== CriBo
=—e== | eopart 15-
40 - wege  TIMeT
1/128 1/64 1/8 1/1 1/128 1/64 1/8 1/1
Fraction of Training Data Fraction of Training Data

AI Lab

‘ Fundamental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 18



Fvaluation #2: Linear Segmentation

O
(D
(@
@
oN
(D
-

\

Backbone

-

Linear
Layer

/

e Encode Image to patch-level features,
e Decode with a linear layer the per pixel semantic labels of the image,
e Supervised training of the linear layer of the decoder for this task.

‘ glinizlgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 19



Linear segmentation performance

Method Backbone Params COCO-Things COCO-Stuff Pascal VOC ADE20K
DINO ViT-S/16 21M 43.9 45.9 50.2 17.5
TimeT ViT-S/16 21M 58.2 48.7 66.3 20.7
iBOT ViT-S/16 21M 58.9 51.5 66.1 21.8
CrOC ViT-S/16 21M 64.3 51.2 67.4 23.1
CrlBo ViT-S/16 21M 64.3 49.1 71.6 22.7
DINOv2R ViT-S/14 21M 75.3 56.0 74.2 35.0
PaNeCo ViT-S/14 21M 82.3 62.0 81.3 40.1
DINO ViT-B/16 85M 55.8 51.2 62.7 23.6
MAE ViT-B/16 85M 38.0 38.6 32.9 5.8
iBOT ViT-B/16 85M 69.4 55.9 73.1 30.1
CrIBo ViT-B/16 85M 69.6 53.0 73.9 25.7
DINOv2R ViT-B/14 85M 78.3 57.6 79.8 40.3
PaNeCo ViT-B/14 85M 85.5 63.3 83.3 44.9

A linear segmentation head is trained on top of the frozen spatial features obtained from different feature extractors. We

report the mloU scores achieved on the validation sets of 4 different datasets.

Fundamental
AI Lab

NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024
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Eval #3: Fully unsupervised semantic segmentation

Semantic Segmentation on Pascal VOC for 21 clusters

mloU
DINOv2R 19 9 / k-Means Overclustering
+ PaNeCo 17.8 (+5.6%)
+ CBFE  41.3 (4+23.3%) - Cluster-based Foreground Extraction (CBFE)
+ CD 55.1 (+13.8%) \

» Community Detection (CD)

Method mloU
MaskConstrast [74] 35.1 N
DINOvV2R |58 3.1 Other State of the Art Semantic Segmentation
DeepSpectral [54] 37.2 > Performances for 21 clusters as the 21 target
DINOSAUR [67] 37.2 semantic labels in the dataset.
Leopart 93] 41.7
COMUS |[87] 50.0 /
PaNeCo 59.1

[‘E" Fundament
E AI Lab



PaNeCo starting with different pretrained weights.

Pascal VOC COCO-Things
At Init +PANECO At Init +PANECO
Pretrain K=GT K=500 Lin. K=GT K=500 Lin. K=21 K=500 Lin. K=21 K=500 Lin.
iBOT [92] 4.4 31.1 66.1 15.4™10 5127201 68.6™° 7.6 28.0 58.9 20.4M%8 5287248 g7 7188

‘ glinizgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 22



PaNeCo starting with different pretrained weights.

Pascal VOC COCO-Things
At Init +PANECO At Init +PANECO
Pretrain K=GT K=500 Lin. K=GT K=500 Lin. K=21 K=500 Lin. K=21 K=500 Lin.

iBOT [92] 4.4  31.1 66.1 15.4710 5121201 686125 76  28.0 58.9 20.4M128 5281248 §7 7188
DINO [15] 4.3  17.3 50.2 14.5M02 47.91306 61 3111 54 1992 43.9 16.9115 50.0130-8 62,4185

‘ glinizgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024
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PaNeCo starting with different pretrained weights.

Pascal VOC COCO-Things
At Init +PANECO At Init +PANECO
Pretrain K=GT K=500 Lin. K=GT K=500 Lin. K=21 K=500 Lin. K=21 K=500 Lin.

iBOT [92] 4.4  31.1 66.1 15.4M™19 51.2701 68.6™*° 7.6 28.0 58.9 20.4™T8 52.8148 §7.718%
DINO [15] 4.3  17.3 50.2 14.5M02 47906 61 311 54 19.2 43.9 16.9™1° 50.079% 62.411%->
TimeT [66] 12.2 46.2 66.3 17.97 52179 68.5™% 18.4 44.6 58.2 20.6*% 54.3™7 64.870

‘ glinizgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 24



PaNeCo starting with different pretrained weights.

Pascal VOC COCO-Things
At Init +PANECO At Init +PANECO
Pretrain K=GT K=500 Lin. K=GT K=500 Lin. K=21 K=500 Lin. K=21 K=500 Lin.

iBOT [92] 44  31.1 66.1 1549 51.21%01 68.6™° 7.6 28.0 58.9 20.4™*® 5287218 77188
DINO [15] 4.3  17.3 50.2 14.5™02 47,9106 613111 54 19.2 43.9 16.9™° 50.0708 62.4718:5
TimeT [66] 12.2 46.2 66.3 17.9™7 52.1™9 68.5*% 18.4 44.6 58.2 20.6™2 54.3™7 64.870F
Leopart [93] 15.4 51.2 66.5 21.0™° 55.3™1 68.3™*% 14.8 53.2 63.0 18.8™% 53.9™7 65.414

‘ glinizgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 25



PaNeCo starting with different pretrained weights.

Pascal VOC COCO-Things
At Inat +PANECO At Inat +PANECO
Pretrain K=GT K=500 Lin. K=GT K=500 Lin. K=21 K=500 Lin. K=21 K=500 Lin.

iBOT [92] 4.4  31.1 66.1 15.4™0 51.2701 68.6™° 7.6 28.0 58.9 20.4M28 52,8148 67.7188
DINO [15] 4.3  17.3 50.2 14.5™02 47,9106 61.3T11 54  19.2 43.9 16.9™1° 50.010-% 62.41185
TimeT [66] 12.2 46.2 66.3 17.9™7 52.17°7 68.5™2 184 44.6 58.2 20.6™* 54.3™7 64.870°
Leopart [93] 154 51.2 66.5 21.0™° 55.3™! 68.3™"°% 14.8 53.2 63.0 18.8™Y 53.917 65474
CrlBo [49] 183 545 71.6 21.77* 59.6™1 72.11%° 14.5 483 64.3 21.179¢ 54.0™7 68.077

frozen clustering and linear segmentation results on Pascal VOC and COCO-Things.

— PaNeCo considerably boosts (1) the performance of different backbones

‘ glinizgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 26



Qualitative Results




Nearest Neighbors of Patches from representations
Query Retrieved Nearest Neighbors

DINOvVZR

PaNeCo

glinizrgental NeCo: Improving DINOv2's spatial representatlonsm 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello Asano. arxiv 2024 28



PaNeCo rarely confuses semantically close patches
Query Retrieved Nearest Neighbors

On average such cases appear around 6% of the times from Pascal VOC retrieval cases.

[E‘@ glinizrgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024
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Key takeaways

AI Lab

‘ Fundamental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 30



Key takeaways

» Dense Patch-ordering is loss well suited for post-pretraining

‘ glinizgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 30



Key takeaways

» Dense Patch-ordering is loss well suited for post-pretraining
» We can improve upon (very strong) DINO/ DINOv2R models
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Key takeaways

» Dense Patch-ordering is loss well suited for post-pretraining
» We can improve upon (very strong) DINO/ DINOv2R models

e Strongest improvements in in-context semantic segmentation and even full-finetuning
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Key takeaways

» Dense Patch-ordering is loss well suited for post-pretraining
» We can improve upon (very strong) DINO/ DINOv2R models

e Strongest improvements in in-context semantic segmentation and even full-finetuning

e also: code/models now available!

‘ glinizgental NeCo: Improving DINOv2’s spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024 30
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PIN: Positional Insert unlocks object localisation abilities in Vi
Michael Dorkenwald, Nimrod Barazani, Cees G. M. Snoek, and Yuki M Asano.

CVPR, 2024



Vision-Language Models are great at many things, but not localisation.

Prompt 1: Provide a bounding box around the cat
Prompt 2: Localise the cat in the image
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Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24. 32




Vision-Language Models are great at many things, but not localisation.

Prompt 1: Provide a bounding box around the cat
Prompt 2: Localise the cat in the image

P2: The cat in the image is
sitting on the right side [.. ]

& GpT-4V

‘ glinizgental Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.



Vision-Language Models are great at many things, but not localisation.

Prompt 1: Provide a bounding box around the cat
Prompt 2: Localise the cat in the image

P1: To determine the
size of the room.

P2: The cat in the image is

P2: The cat in the image is localised in the image.

sitting on the right side [...]
& GPT-4V @‘ OpenFlamingo

‘ glinizgental Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.



Vision-Language Models are great at many things, but not localisation.

Prompt 1: Provide a bounding box around the cat
Prompt 2: Localise the cat in the image

P1: P1: To determine the P1: Cats are not fond of
size of the room. being confined in a small
space.

P2: The cat in the image is
P2: The cat in the image is L. . P2: Yes, you can do
localised in the image.

sitting on the right side [...] that
@ GPT-4V Z‘?’-‘OpenFIamingo .-« FROMAGe

‘ glinizgental Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Vision-Language Models are great at many things, but not localisation.

Prompt 1: Provide a bounding box around the cat
Prompt 2: Localise the cat in the image

P1: P1: To determine the P1: Cats are not fond of
size of the room. being confined in a small
space.

P2: The cat in the image is
P2: The cat in the image is L. . P2: Yes, you can do
localised in the image.

sitting on the right side [...] that
@ GPT-4V %OpenFlamingo .-« FROMAGe

P1: Provide a bounding box
around the cat’s plant

P2: <empty string>

é BLIP-2

‘ glinizgental Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our solution: unlock localisation abilities in frozen VLMSs

VLMs are bad at
localising and

cannot handle the
bbox detection task

‘ glinizﬁental Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our solution: unlock localisation abilities in frozen VLMSs

VLMs are bad at

localising and But (somewhat noisy)
————————————————————————————

cannot handle the | localisation does emerge in
bbox detection task | some VLMs

‘ glinizﬁental Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our solution: unlock localisation abilities in frozen VLMSs

VLMs are bad at Try to unlock the

forgotten

localising and But (somewhat noisy)
————————————————————————————

cannot handle the | localisation does emerge in |localisation abilities
bbox detection task | some VLMSs in frozen VLMs

‘ glinizgental Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24. 33



Our approach

frozen VLM, e.g. Flamingo

ilinizrgental

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.

34



Our approach

’o

frozen VLM, e.g. Flamingo Positional Insert (PIN) module

!"E" Fundamental
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Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our approach

’o

frozen VLM, e.g. Flamingo Positional Insert (PIN) module Synthetic, unlabeled data

AI Lab

‘ Fundamental Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24. 34



The data
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Background
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Pasting Pasting

Synthetic Data Generation (SDG)

Zhao et al. X-Paste: Revisiting Scalable Copy-Paste for Instance Segmentation using CLIP and StableDiffusion. ICML 2023
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Example generated data

Fundamental

AT Lab Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24. 36




Default Flamingo

Image

Frozen VLM

Fundamental
AI Lab

Vision
»Encoder

Du

 —————e )

Text

}

Fusion |
Network

Large Language Model

}

I Tokenizer I

!

Text
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Our method 1: feed the frozen vision encoder synthetic data

Text

}

Large Language Model

Vision
Encoder

ol

Fusion |
Network

}

Synthetic data generation

l Tokenizer l

Trained weights Text
Frozen VLM

‘ glinizgental Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our method 2: provide VLM spatial learning capacity

Trained weights
Frozen VLM

Fundamental
AI Lab

Smusmdal embedding

q

Text

}

Fusion
Network

Large Language Model

}

l Tokenizer l

}

Text

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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Our method 3: train using pasted obj locations via next-word prediction

Trained weights
Frozen VLM

Fundamental
AI Lab

Smusmdal embedding

| “[50, 120, 80, 160]”

}

Fusion |
Network

Large Language Model

}

l Tokenizer l

!

“In the 1mage i1s a monkey located at”

Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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We beat common PEFT methods

Method PVOCSB Objects COCOSB Objects LVISSS Objects
mloU mloU M mloU L ‘ mloU mloU M mloU L ‘ mloU mloU M mloU j 2
Baselines
raw 0 0 0 0 0 0 0 0 0
random 0.22+0.04 0.10+0.02 0.33+0.06 | 0.124+0.04 0.07+0.02 0.22+0.08 | 0.07+0.03 0.06+0.02 0.18+0.09
. 2 context 0.19+0.11  0.08+0.05 0.30+0.18 | 0.10+0.08 0.06+0.04 0.18+0.16 | 0.04+0.06 0.03+0.04 0.10+0.15
S, D context 0.19+0.09 0.07+0.04 0.31+0.15 | 0.10+0.08 0.06+0.04 0.20+0.16 | 0.06-+0.05 0.04+0.03 0.17+0.13
g 10 context 0.20+0.11  0.06+0.03 0.32+0.18 | 0.094+0.07 0.05+0.04 0.17+0.14 | 0.05+0.05 0.03+0.03 0.15+0.14
~ PEFT
é CoOp on LLM 0.28 0.11 0.43 0.22 0.10 0.39 0.13 0.07 0.40
o VPT on F 0.34 0.16 0.51 0.26 0.15 0.47 0.19 0.14 0.48
VPT on ¢y 0.42 0.21 0.61 0.33 0.22 0.57 0.23 0.19 0.56
LoRA on ¢y 0.44 0.26 0.62 0.33 0.23 0.58 0.23 0.19 0.55
& PIN (ours) 0.45 0.27 0.62 0.35 0.26 0.59 0.26 0.24 0.61
- PEFT
— VPT on F 0.33 0.12 0.51 0.27 0.12 0.50 0.18 0.11 0.47
&L VPT on ¢y 0.32 0.12 0.50 0.26 0.11 0.48 0.17 0.10 0.46
g & PIN (ours) 0.44 0.24 0.63 0.34 0.22 0.60 0.26 0.23 0.60

[‘E" Fundamental
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Dorkenwald, Snoek, Asano. PINs: Positional Insert unlocks object localisation abilities in VLMs, CVPR'24.
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VeRA: Vector-based Random Matrix Adaptation
Dawid J. Kopiczko, Tijmen Blankevoort, Yuki M. Asano
ICLR 2024
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We make LoRA more efficient

dimout

BTN

Pretrained Weights

W € Rdxd

Low-Rank Adaptation (LoRA)

W' =W + AB,
where A B are low-rank,

earned per-layer
Fundamental
h:o AI Lab

46



We make LoRA more efficient

dimout
A

BTN

Pretrained Weights

W € Rdxd

Low-Rank Adaptation (LoRA)

W' =W + AB,
where A B are low-rank,

earned per-layer
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Pretrained Weights

W e RdXd

shared

S

across layers

shared
across layers

»

[ - frozen

[ - trainable
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We make LoRA more efficient

dimout dll;nout
A

BTN

Pretrained Weights

shared

C—

across layers

Pretrained Weights

-

shared

T——

across layers

l | l : [ - frozen
diI;lin dir;r ] - trainable
Low-Rank Adaptation (LoRA) Vector-based Random Matrix Adaptation (VeRA)
W =W + AB, W =W + AdBb,
where A,B are low-rank, where A,B are random & frozen, same across layers;
earned per-layer d,b are learned vectors

!"Eﬂ Fundamental P
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Random matrices are powerful!

Linear Dimensionality Reduction

Given... T

'\Q\: O
02 L3 o

®

RN

. 1s there a L such that

g — x5 || ~ (1 £ e)||a; — a4

'a:’Q

dlmension M

Sub
i with M = dim L < N?

d 1 Random Features for Large-Scale Kernel Machines. Rahimi et al. NeurIPS 2007
‘ glianrgenta Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs. Frankle et al. ICLR 2021
HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image Models. Ruiz et al. ArXiv 2023




Random matrices are powerful!

Turns out: random projection is very good

Linear Dimensionality Reduction

Theorem 5 Let B, « be a matriz whose entries are i.i.d. N(0,1), and let f : R* — RF be

gen by f(x) = % Then with high probability (say > % or > 1 — %) forallx # ye X

we have 1 — e < ||f(|‘|£:£l(|y)ll < 1+e.

2 ® o
," O ZBS O R 2 \} Proof It suffices to prove that for all v € R™,
y RS
O

@ 9 © Pfr[l—€§M§l+€]>l—n%. (1)

xr, © P points

(z1iven...

o]l

This is enough because applying (1) tov =z —y for z,y € R", we get f(z,y) = f(z)— f(y),
and by a union bound over ('2') pairs x # y € X the theorem follows.

In fact, it suffices to prove (1) for unit length v, since f is a linear transformation and
f (—) — IO for all v.

vl vl

Assume ||v|| = 1. Each coordinate of Bv = ({(by,v), ..., (b, v)) has distribution N (0, 0% =

L. iS there a L SUCh ‘that |v]|? = 1) by Fact 4, and they are clearly independent. Denoting g; = (b;, v), we have:

. [ || Bvl|? 1 . ,
Ellfw)2 = E [ 1201 = Epg2 4 gl =1, )

g — x5 || ~ (1 £ e)||a; — a4

so E[||Bv||*] = k. We will bound Pr[||f(v)||* > (1 + €)?] = Pr[||Bv||* > k(1 + €)?]. A similar

Wlth M — dlm L << N ? argument works for the event ||Bv||2 < k(1+ 6)2.

dlmension M

Random Features for Large-Scale Kernel Machines. Rahimi et al. NeurIPS 2007
‘ glinizgental Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs. Frankle et al. ICLR 2021 47
HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image Models. Ruiz et al. ArXiv 2023



- NOLA: https://arxiv.org/abs/2310.02556
- Uses learnable Kronecker products of random matrices

LORA family

- LoRA: https://arxiv.org/abs/2106.09685

- the OG of parameter-efficient finetuning
- VeRA: https://arxiv.org/abs/2310.11454

- 10x more parameter-efficient than LoRA
- QLOoRA https://arxiv.org/abs/2305.14314

- LoRA on a quantised LLM + tricks

- LoRA-FA: https://arxiv.org/abs/2308.03303
- 2x more parameter-efficient than LoRA

- OFT: https://arxiv.orq/abs/2306.07967
- LoRA but with orthogonal matrices

- BOFT: https://arxiv.org/abs/2311.06243
- Upgrade on OFT,

+ LoKr: https://arxiv.orag/abs/2103.10385

- Combines two LoRAs via Kronecker product
- LoHa: https://arxiv.org/abs/2108.06098

- Hadamard product of two LoRA updates

[‘E’ Fundamental
E AI Lab

- DyLoRA: https://arxiv.org/abs/2210.07558

- trains LoRA with any ranks and then picks one
- KronA: https://arxiv.org/abs/2212.10650

-+ adaptation based on Kronecker products
- Delta-LoRA: https://arxiv.org/abs/2309.02411

Incremental updates to the original fully connected layer

- AdalLoRA: https://arxiv.org/abs/2303.10512
+ adaptively allocates the rank of LoRA during training
- LoftQ: https://arxiv.org/abs/2310.08659

Initialise LoRA to minimise quantisation error of LLM

- DoRA: https://arxiv.org/abs/2402.09353

» do the weight-norm trick on LoRA matrix (learn direction)
- PISSA

» start LoRA with SVD
- LoRA-XS

- frozen SVD and learnable small matrix inbetween U,V

48
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https://www.google.com/url?q=https://arxiv.org/abs/2309.02411&sa=D&source=calendar&usd=2&usg=AOvVaw3ibqoLx5jfxe2BblOSd5xh
https://www.google.com/url?q=https://arxiv.org/abs/2303.10512&sa=D&source=calendar&usd=2&usg=AOvVaw37WwdpyLn7IedXOXtOUGT0
https://arxiv.org/abs/2310.08659
https://arxiv.org/abs/2402.09353

Results on GLUE with RoBERTa

Method | ¥ Tramable | gqro  MRPC  CoLA  QNLI  RTE  STS-B  Avg.
Parameters
FT 125M 04.8 90.2 63.6 92.8 78.7 01.2 85.2
BitFit 0.IM 93.7 92.7 62.0 01.8 81.5 90.8 85.4
5 AdptP 03M | 942401 88.5+11 60.8+04 931101 7154127 89.7403 83.0
5 Adpt? 09M | 94.74103 8844101 626100 930102 759i22 90310 84.2
LoRA 0.3M 95.1:&0.2 89.7:}:0,7 63.411,2 93.3:1:0,3 86.6:|:0,7 91.5:];0.2 86.6
VeRA 0.043M 94.6;t0.1 89.5i0,5 65.6:|:0,8 91.8:t0.2 78.7:]:0.7 90.7;130.2 85.2
AdptP 3M | 96.1403 902407 683110 948102 838429 921407 87.6
- Adpt” 0.8M | 96.6+0.2 89.7+12 678425 9484103 80.1129 9194104 86.8
2 AdptH 6M 96.2:&0,3 88.7:}:2.9 66.5;|;4.4 94.7:1:0.2 83.4:!:1.1 91.011.7 868
j AdptH 0.8M | 963105 877417 663150 947102 729459 915405 84.9
LoRA-FA 3.TM | 96.0 90.0 68.0 94 4 86.1 92.0 87.7
LoRA 0.8M 96.2:&0,5 90.2:}:1,0 68.211.9 94.8:1:(),3 85.2:1:1.1 92.3:|:0,5 87.8
VeRA 0.061M 96.110,1 90°9i0.7 68.0i0,8 94.410.2 85.9i0.7 91-7:1:0.8 87.8

[‘E" Fundamental
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Results on E2E benchmark with GPT2

Fundamental
AI Lab

Method | ¥ Tramable | gy pry NIST METEOR ROUGE-L  CIDEr
Parameters
FT! 35492M | 682  8.62 46.2 71.0 2.47
s Adpt-! 0.37M | 66.3 8.4l 45.0 69.8 2.40
g Adpt™? 11.09M | 689  8.71 46.1 71.3 2.47
m Adpt™! 11.00M | 67.3  8.50 46.0 70.7 2.44
> DyLoRAZ 039M | 692 875 463 708 246
AdalLoRA® 0.38M | 682  8.58 44.1 70.7 2.35
LoRA 0.35M | 689  8.69 46.4 71.3 2.51
VeRA 0.098M | 70.1 8.81 46.6 71.5 2.50
FT' 774.03M | 68.5  8.78 46.0 69.9 2.45
4 Adpt 0.88M | 69.1  8.68 46.3 71.4 2.49
% Adpt™ 23.00M | 689 870  46.1 71.3 245
- LoRA 0.77M | 70.1  8.80 46.7 71.9 2.52
VeRA 0.17M | 703 8.85 46.9 71.6 2.54
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Instruction tuning: better than LoRA with T00x less parameters

Lamal38 |- | |26l
LLAMA 7B
LLaMA 13B | ps S| 322
LLAMA2 7B b:ﬁ: 15? 21\1\/1 g (l)g
LLAMA2 13B I\}:I;R: 2534311\1\: g;g
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Results on Image Classification with pretrained ViT

# Trainable

Method CIFAR100 Foodl01 Flowersl02 RESISC45
Parameters

m  Head - 17.7 86.1 98.4 67.2

&_': Full 85.8M 36.5 90.8 08.9 78.9

> LoRA 294 9K 85.9 89.9 08.8 77.7
VeRA 24.6K 84.8 89.0 99.0 77.0

1  Head - 79.4 76.5 98.9 67.8

_&_': Full 303.3M 86.8 78.7 08.8 79.0

> LoRA 786.4K 87.0 79.5 99.1 78.3
VeRA 61.4K 87.5 79.2 99.2 78.6

[‘E" Fundamental
f AI Lab
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DoRA: Weight-Decomposed Low-Rank Adaptation

Pretrained
Weight

Wy € R* | — Trainable

— Frozen

Decompose
(Initialize)

Direction Direction

4 7/

1/|[Wol|. 1/|[V + AV

: , | +
| Pretrained ! ﬁ 5&
. Weight :> | A5

Pretrained
Weight

\

AI Lab Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks. Salimans & Kingma. NeurIPS 2016

Fundamental DoRA: Weight-Decomposed Low-Rank Adaptation. Liu et al. 2024



DoRA: Weight-Decomposed Low-Rank Adaptation

Pretrained
Weight

WO = Rdxk

Decompose
(Initialize)

Direction

[
I
I
|
I
I
|
I
|
I
|
|

\

1/||W0||c

Pretrained
Weight
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— Frozen

. — Trainable

Direction

—

/
I
I
I
I
I
I
I
I
I
I
I

1/[[V + AVl

%

Pretrained
Weight

L

AV € R™*

e Adapt the direction, not the magnitude
e See also weight-norm (2016)

DoRA: Weight-Decomposed Low-Rank Adaptation. Liu et al. 2024

Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks. Salimans & Kingma. NeurIPS 2016
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DoRA: Weight-Decomposed Low-Rank Adaptation

Pretrained
Weight

WO = Rdxk

Decompose
(Initialize)

Direction

[
I
I
|
I
I
|
I
|
I
|
|

\

1/”W0||c

Pretrained
Weight
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— Frozen

— Trainable

Direction

—

/
I
I
I
I
I
I
I
I
I
I
I

1/[[V + AVl

%

Pretrained
Weight

L

AV € R™*

e Adapt the direction, not the magnitude
e See also weight-norm (2016)

Table 5. Average scores on MT-Bench assigned by GPT-4 to the
answers generated by fine-tuned LLaMA-7B/LLaMA2-7B.

Model PEFT Method # Params (%) Score

LoRA 2.31 5.1
DoRA (Ours) 2.33 3.5

LLalA=/B VeRA 0.02 4.3

DVoRA (Ours) 0.04 5.0

Combinable with VeRA

LoRA 2.31 5.7
DoRA (Ours) 2.33 6.0
VeRA 0.02 55
DVoRA (Ours) 0.04 6.0

LLaMA2-7B

DoRA: Weight-Decomposed Low-Rank Adaptation. Liu et al. 2024

Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks. Salimans & Kingma. NeurIPS 2016
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No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations
Walter Simoncini, Spyros Gidaris, Andrei Bursuc, Yuki M. Asano
NeurlPS 2024
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|dea

The loss indicates how the network output should change to solve a task

AI Lab

‘ Fundamental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



|dea

Gradients carry information
about the network, task and data

AI Lab

‘ Fundamental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



|dea

Gradients carry information

#1 Why not use them as features too?

about the network, task and data

‘ i‘;nizrgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024




|dea

Traditionally, vision models are trained with supervision

Labels are needed to compute gradients @

‘ glinizrgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024
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Self Supervised Learning to the rescue! £

No Labels
Several Proxylosses

‘ i‘;nizrgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Method
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(1) Patchify and Forward

(3) Extract
Per-Sample
Gradients

(4) Project

Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024

(2) Compute Loss & Backpropagate

Attract

Fixed Negative Batch
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Given a pre-trained vision transformer we
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Method

Given a pre-trained vision transformer we

Forward an image (or multiple views of it).
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(1) Patchify and Forward

(3) Extract
Per-Sample
Gradients

(4) Project
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Method

Given a pre-trained vision transformer we
Forward an image (or multiple views of it).

Compute a self-supervised loss & backpropagate.

(2) Compute Loss & Backpropagate

. ——1
<_ Attract
_
S |
1) Patchify and Forward
eGrra:::::tz (4) Project Fixed Negative Batch

‘ i‘;nizrgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Method

Given a pre-trained vision transtormer we

Forward an image (or multiple views of it).
Compute a self-supervised loss & backpropagate.

Extract the gradients wrt the weights of a layer and downsample them.

(2) Compute Loss & Backpropagate

< < ————1 Attract
rac
< -- <« - - .
——1
——— 11
(1) Patchify and Forward Repel I
(3) Extract L JL
Per-Sample . —> I I:I I:I
Gradients (4) Project Fixed Negative Batch

‘ il;nizrgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Method

Given a pre-trained vision transtormer we
Forward an image (or multiple views of it).
Compute a self-supervised loss & backpropagate.

Extract the gradients wrt the weights of a layer and downsample them.
Project gradients and obtain a FUNGI (Feature from UNsupervised Gradlents).

.
A

> o -
—

. S
(1) Patchify and Forward Repel
® Extact . —— ——
Per-Sample . .
Gradients (4) Project Fixed Negative Batch

‘ i‘;nizrgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024

(2) Compute Loss & Backpropagate

>
<___

Attract




Self-Supervised Obijectives

vSimCLR

Project &
Concat

@ .
’ ’ Gradient
for (CU> \\ D Enhanced

Features
Database

‘ g‘;nizrgc ““““ Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Self-Supervised Obijectives

Three objectives: DINO, SImCLR and KL.

vSimCLR

Project &
Concat

@ .
’ ’ Gradient
for (m) \\ D Enhanced

Features
Database

‘ g‘;nizrgc ““““ Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Self-Supervised Obijectives

Three objectives: DINO, SImCLR and KL.
We concatenate (multiple) gradients and the model embeddings.

v SImCLR
Sk Il Project &
Concat

Features
Database

@ .
’ ’ Gradient
for (m) \\ D Enhanced

‘ g‘;nizrgc ““““ Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Self-Supervised Obijectives

Three objectives: DINO, SImCLR and KL.
We concatenate (multiple) gradients and the model embeddings.

More powerful, as they contain information from multiple objectives.

vSimCLR
Sk Il Project & |
___’ o Concat Gradi

\ ’ radient

for (m) \ ' D Enhanced

\ Features

‘ Database

VKL

‘ g‘;nizrgc ““““ Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Self-Supervised Obijectives

Three objectives: DINO, SImCLR and KL.
We concatenate (multiple) gradients and the model embeddings.

More powerful, as they contain information from multiple objectives.

More robust, as the other features can counteract a bad local gradient approximation

vSimCLR ]

. B ..
__f:(;)_’.\\ _’ D onca

Fundamciicaas

‘ AT Lab Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024
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Code Implementation

wrapper = FUNGIWrapper
model=model

target_layer="blocks.ll.attn.proj"
device=device

extractor_configs=
KLConf1ig

DINOConfig

https://github.com/WalterSimoncini/fungivision

fungt = wrapper(PIL.Image.open("image.jpg"

‘ glin%gental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024




Properties

Gradient features can enhance the retrieval performance
When combined with other gradient features or the embeddings, they improve further

Gradients encode different and complementary information to each other
Pair Accuracy (Flowers) Pair Acc. (ESAT) Pair Acc. (Cars)
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][\l 64.0 ©65.4 65.3 WiVW; 36.8 37.0 35.8 BeiHs

Adelndoy

SiImCLR - 94.4 94.6 37.8 38.7 38.6 FErRe
. v/ v O
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Experiments

We evaluate FUNGI across 20 backbones, 22 datasets and 3 modalities (vision,
language and audio), for a total of ~1000 experiments.

We evaluate FUNGI in
e Retrieval & k-nearest neighbor (k-nn) classification

e Linear classification
e k-means clustering

‘ g‘;nizgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Retrieval-Based Tasks

AI Lab

‘ Fundamental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



k-nn classification (vision)

Large improvements in k-nn, even for DINO v1/2 and CLIP
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k-nn classification (vision)

Up to 5.3% better for CLIP and 4.8% for DINOv2 few-shot
Few Shot
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B Embeddings

+1.4%
o FUNGI +4.8%
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k-nn classification (language)

Up to 12.5% better using BERT Base
BERT Base (Full Dataset)
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k-nn classification (language)

Up to 16% better in few shot classification using BERT Base

O
BERT Base (Few Shot)

704 M Embeddings
e FUNGI
60 -
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O
©
5 40 -
O
)
<
30 -
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AI Lab

Dataset
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k-nn classification (audio)

Up to 4.2% better using a SSAST backbone

SSAST

+2.5%

+1.2%

Accuracy

+0.8%
ESC 50 SpeechCommands ESC 50 SpeechCommands
(Full) (Full) (Few Shot) (Few Shot)

Dataset
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Visual In-Context Segmentation

Fundamental
AI Lab




In-Context Semantic Segmentation (Hummingbird) on Pascal VOC

Up to 17% improvement over DINOv1

DINO ViT-S/16 DINO ViT-B/16
801 mmm Embeddings -
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In-Context Semantic Segmentation on Pascal VOC

Close to SoTA, without any training!
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In-Context Semantic Segmentation [8] on Pascal VOC

‘ ggnizgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Language

Intent classification on banking-77 with GPT 40 mini
Examples selected with FUNGI improve accuracy by +2.5%!

You have to annotate banking-related queries
with an appropriate intent. You must choose a
single class 1in the following comma-separated

list:

Banking-77

{list of classes}

. Embeddings 38.7
You must only output the class, nothing more. + KL + SlmCLR 91.2 T25

Examples follow:
{20 (text, label) training pairs}

The test sample is: {text}

‘ ggnizlgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024



Other Evaluations
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Vision Linear Classification

Our features improve the performance of logistic regression for most backbones

Full Dataset
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Figure 10: FUNGI works across backbones for linear probing. Accuracy in logistic regression-based
image classification of embeddings versus FUNGI features on various ViT backbones, both for full dataset
and few shot setups, averaged over 11 datasets. For the FUNGI features, we chose the best performing
combination across datasets. “AR” indicates AugReg backbones (Steiner et al., 2022).
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Summary

Self-supervised gradients can be used as features, and can perform
better than the embeddings

Combining gradients (and embeddings) produces strong features
for retrieval, linear classification and clustering

FUNGI works across modalities

‘ ggnizgental Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurlPS 2024




There is lots of exciting research to achieve better
models (efficient, robust, faster) with post-pretraining



' Computer vision needs more post-pretraining

(raW) LLMs Instruction tuning Chat LLMs
(e.g. GPT-3) (e.g ChatGPT)

X requires industrial compute requires fraction of compute

X model is relatively useless makes LLM useful, customisable, better

Post-pretraining

. . — . ]
X requires industrial compute requires fraction of compute

model is already useful _
y makes vision model even better,

across various tasks
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Computer vision needs more post-pretraining

(raW) LLMs Instruction tuning Chat LLMs
(e.g. GPT-3) (e.g ChatGPT)

X requires industrial compute requires fraction of compute

X model is relatively useless makes LLM useful, customisable, better

1st-gen Vision

Foundation Models Post-pretraining Foundathn Models
(e.g. DINO, CLIP) (e.g Neco, TimeTuning)

requires industrial compute — . .
Xreq P requires fraction of compute

model is already useful _
y makes vision model even better,

across various tasks

Reference
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Computer vision needs more post-pretraining

LLMS Instruction tuning Chat LLMs
) (e.g. ChatGPT)

X requires industrial compute requires fraction of compute

X model is relatively useless makes LLM useful, customisable, better

1st-gen Vision
Foundation Models

(eg DINO, CLIP)

Post-pretraining Foundathn Models
(e.g. Neco, TimeTuning)
X requires industrial compute

requires fraction of compute
model is already useful

makes vision model even better,
across various tasks
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Computer vision needs more post-pretraining

LLMS Instruction tuning Chat LLMs
) (e.g. ChatGPT)

X requires industrial compute requires fraction of compute

d . “[50, 120, 80, 160]”
makes LLM useful, customisable, better [

}

Large Language Model

X model is relatively useless
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Instruction tuning LLMs
hatGPT)

X requires industrial compute requires fraction of compute
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Instruction tuning t LLMs
(e.g ChatGPT)

X requires industrial compute requires fraction of compute

X model is relatively useless makes LLM useful, customisable, better

1st-gen Vision
Foundation Models Post-pretraining Foundation Models

(e.g. DINO, CLIP) (e.g. Neco, TimeTuning)

X requires industrial compute

requires fraction of compute
model is already useful

makes vision model even better,
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Low-Rank Adaptation (LORA) Vector-based Random Matrix Adaptation (VeRA)
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Instruction tuning

X requires industrial compute requires fraction of compute

X model is relatively useless makes LLM useful, customisable, better

1st-gen Vision

Foundation Models Post-pretraining
(e.g. DINO, CLIP)

X requires industrial compute

(e.g. Neco, TimeTuning)

requires fraction of compute

model is already useful _
y makes vision model even better,

across various tasks
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Instruction tuning

X requires industrial compute requires fraction of compute

X model is relatively useless makes LLM useful, customisable, better

1st-gen Vision

Foundation Models Post-pretraining n M
(e.g. DINO, CLIP) (e.g Neco, TimeTuning)

requires industrial compute — . .
Xreq P requires fraction of compute

model is already useful _
y makes vision model even better,

across various tasks

rundenantal ’ - " - | . Method

Given a pre-trained vision transformer we
Forward an image (or multiple views of it).
Compute a self-supervised loss & backpro

Extract the gradients wrt the weights of a layer and downsample them [2].
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Instruction tuning

X requires industrial compute requires fraction of compute

X model is relatively useless makes LLM useful, customisable, better
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Foundation Models Post-pretraining n M
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Instruction tuning at LLMs
g ChatGPT)

X requires industrial compute requires fraction of compute

X model is relatively useless makes LLM useful, customisable, better

1st-gen Vision
Foundation Models

(eg DINO, CLIP)

Post-pretraining

(e.g. Neco, TimeTuning)
X requires industrial compute — . .
q P requires fraction of compute

model is already useful _
y makes vision model even better,

across various tasks
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