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e such robots’

e: British TV (1969)



So where have robots been successful?

Whenever we adapt tasks to robots!

e need to adapt robots to tasks!
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Robot Learning...

® C(lassical robot engineering is really good at
adapting tasks to the robot!

® Data is very expensive!

® |f you can learn in a robot simulator, you don’t
need RL!

® Things break!

® (Generalization is often impossible: “Golf does not
help Hockey!” (John Milton)

® |earning in Real-Time

® Computation, communication and energy
limitations...

...is not a straightforward answer!
Ia :
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Robot Reinforcement Learning
requires...

An inductive bias allows a learning
algorithm to prioritize one solution (or
interpretation) over another,
independent of the observed data. |[...]
Inductive biases can express
assumptions about either the data-
generating process or the space of
solutions.

(Mitchell, 1980; Battaglia et al., 2018)
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Robot Reinforcement Learning

_requires...
-

What mductlve blases does robctlcc
offer? How can we use them fol
IS improving robot reinforcement leagn
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Imitation Learning Is
always easier than
Reinforcement Learning



Imitation Learning

| Model-Free
M Behavioral
Model-Based q(s, a) Cloning
Behavi | (Michie & Chambers,
e av_lora Sammut et al.)
Cloning

(Englert et al.)

Dual
BIVE:] o Function
Problem Putermann (1998) implies: for Minimal
IRL is harder than MBC!

Physics

Solve for the optimal

parametric policy class:
Motor prlmltlves

(Ziebart et al.; Boularias et al.) (Schaal et al; Kober et al;
Paraschos et al; Gomez-Gonzalez)



Jens Kober



Learning Perception-adapted Probabilistic Motor Primitives

Learning from human demonstrations

Gomez-Gonzalez, S.; Neumann, G.; Schoélkopf, B.; Peters, J. (2020).
Sebastian G G | Adaptation and Robust Learning of Probabilistic Movement Primitives, IEEE
SloaldiEin teiliezd-rolnizal s Transactions on Robotics (T-Ro), 36, 2, pp.366-379.



Reinforcement Learning Problem

Dual: RL
by Linear

Programming
Bellman’s

Dual Prin(.:iple. of
Problem Optimality
m “Bellman Equation™
Primal: RL by Linear

Programming

Vs — max F {r(s,a,s") +~vV(s")}

No natural notion of data!



| . Inductive Bias

Stay close to your
training data
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Relative Entropy Policy Search

Dual: RL
by Linear
Programming

Peters (2007). Relative Entropy

Policy Search, Tech. Rep. Further Constraint: Policy Similarity Objective
Peters, Muelling, Altun (2010). u;.-r( s) ﬂ( a| s) from
Relative Entropy Policy Search, € > E ﬂ'ﬂ-(s)ﬂ'(als) ]og LB T i R G Behavioral
A s.a q(s. a) Cloning

Different g yield analytical solution, mellow/softmax, entropy
regularization, SAGC, ...
Natural policy gradients/NAC/TRPO are approximations!
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(Robot) Movement is
composed only of strokes
or rhythmic behavior



Learning from a single long
demonstration...

Rudolf Lioutikov
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...generates modular :
movement libraries!

Demonstrations Movement Primitive Library

Execution

time

r~p(1T]0©,8)= H,,.ql’ (3]©)

Lioutikov, R.; Neumann, G.; Maeda, G.; Peters, J. Learning Movement Primitive Libraries through

Probabilistic Segmentation, International Journal of Robotics Research (IJRR). 5 LENﬁ\H/ENFgﬁf\_E
22
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2. Inductive Bias

Use modular policy
structure for composition!
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Modular Control Policies

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. Learning to Select and Generalize Striking Movements in Robot
IHE Table Tennis, International Journal on Robotl eS@:&ﬁGthE
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“Naive’ Extension of
REPS

Relative Entropy Policy Search (REPS)

"(s)m(a|s) Probability distribution

asri” (8)m(al8) Follow system dynamics

7 (s)m(als) Close to training data (no
g(s,a) wild exploration)

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. Learning to Select and Generalize Striking Movements in Robot
Table Tennis, International Journal on Robotics Research.

Daniel, Neumann & Peters. Hierarchical Relative Entropy Policy Search, JMLR 25



K. Muelling, Z.'Wang, ). Peters of TU Darmstadt and MPI Intelligen
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Problems with Naivety g
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Localized behavior can
be learned efficiently!

Tetherball average reward achieved

R R R

- - - - -

Good performance

"Naive" Approach
——H|REPS

Average Reward

| | - -~ REPS .
20 30 40 50
lteration

Tetherball # of options used

Fast reduction in
the number of
primitives

)
S
2
o
$

"Naive"Approach!

Daniel, Neumann & Peters. —=—HIREPS

Hierarchical Relative Entropy
IHE Policy Search, JMLR Iteration
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2. Inductive Bias: Use modular policy structure for composition!
3. Inductive Bias
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Models can be very
powerful, but errors In
models are often
exploited by RL
algorithms...



Model-based RL with
Differentiable Physics Models

Michael Lutter

Differentiable Newton Euler Algorithm:

N
Yfi=loV st oc@0)=0 c(x6)<0
i=0

with the physics parameters 8 consisting of inertia,
mass, lengths, center of mass, string length, etc..

Learn Ball in a Cup via offline MBRL:

(1) Record dataset on the physical manipulator
(2) Learn model using the recorded data

(3) Learn trajectory with learned model & eREPS
(4) Evaluate learnt trajectory on the real WAM

Lutter, M.; Silberbauer, J.; Watson, |.; Peters, J. (Submitted). A Differentiable Newton-Euler Algorithm for Real-World
Robotics, Submitted to the IEEE Transaction of Robotics (T-RO).




Performance based on 4min of
Motor Babbling

Michael Lutter

Structured models enable out of distribution generalization.
- DIiffNEA extrapolated to completely unseen states
- For MBRL generalization might be more important than perfect prediction

Nominal Model + eREPS DiffNEA Model + eREPS FFNN Model + eREPS LSTM Model + eREPS

Transferability: 0% Transferability: 60% Transferability: 0% Transferability: 0%
Repeatability: 0% Repeatability: 90% Repeatability: 0% Repeatability: 0%

Lutter, M.; Silberbauer, J.; Watson, |.; Peters, J. (Submitted). A Differentiable Newton-Euler Algorithm for Real-World
Robotics, Submitted to the IEEE Transaction of Robotics (T-RO).



Lutter, M.; Silberbauer, J.;Watson, |.;
Peters, J. (2021). Differentiable
Physics Models for Real-world
Offline Model-based Reinforcement

Learning, ICRA.

Model
Engineering

Requires:

« Kinematic Chain
=« Link Dimension
= Link Parameter

————————

Assumption:
« Rigid Body Dynzamics

Models:
vV  Forward Model
v  Inverse Model

v Energy Model

System
Identification

Requires:
« Kinematic Chain
« Link Dimension

—
————————

Assumption:
=« Rigid Body Dynzmics

Models:

vV  Forward Model
Y  Inverse Model
v Energy Model

Lutter, M.; Ritter, C.; Peters, |.
(2019). Deep Lagrangian
Networks: Using Physics as Model
Prior for Deep Learning,

Michael Lutter

International Conference on
Learning Representations (ICLR).

Differentiable Newton
Euler Algorithm

« Kinematic Chain

Assumption:
« Rigid Body Dynamics

Models:
v  Forward Mcdel
v Inverse Maodel

v Energy Model

Deep Lagrangian
Networks

Assumption:

Lzgrangian Mechanics

Models:

v

Y
v

Forward Model
Inverse Model

Energy Model

Black-box Model
Learning

Assumption:

Models:
A Farward Model
A Inverse Madel



3. Inductive Bias

Use physically consistent
models!
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drratrtalion Qpdumtzation
Bissn(Sa00B?)

G(0) = E, {maxé LYV @, 5)} — max, E, {%ZN J(0, zj)} > 0

Optimal Solution True Optimal
for Samples Solution

VVe are guaranteed to

be wrong! e z




SPPOT'A evaluation on the Ball-Balancer

Centering trom an initial position

Fabio
Muratore

SPOTA
controls the
S.0.B.

Muratore, F. et al. (2022). Assessing Transferability

from Simulation to Reality for Reinforcement
Learning, PAMI



4. Inductive Bias

Control your
optimization bias
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Outline

|. Inductive Bias: Stay close to your training data!

2. Inductive Bias: Use modular policy structure for composition!

3. Inductive Bias: Use physically consistent models!

4. Inductive Bias: Control your optimization biases!

5. Inductive Bias: Use your constraints to direct your exploration!

6. Inductive Bias
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The fastest way to destroy
a robot system is by
exploration...



Davide Puze
Tateo Liu

Safe Exploration

maXQ {'St Q¢ Z;FZO ’Yt r(st ’ at ) ?

s.t. (@) =0, glg) <0

St — [Qt Cl?t]T

Robotics problems hide
their difficulties in the
constraints!



4. Inductive Bias

Use your constraints to
direct your exploration!
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. Construct the constraint

Exploration on the
Constraint Manifold

Tateo Liu

manifold

M, :¢c(q) =0
. Determine the bases N, of the

tangent space 7.

. Sample state velocity in the
tangent space

Manifold Maintenance

q . L
ﬂt N, ((Jz /u'/)a'/_J(;[(qh,ut)"vb(QUQt) 7' (.!’1/1/.-1437\ (( G4y Lt )
LMt N ~ e Y ————— -

Tangent Space Action Curvature Correction Error Correction






Prepare

Piotr Haitham
Kicki Bou Ammar

Lissajous Hitting Dynamic Hitting

Liu, P.; Tateo, D.; Bou-Ammar, H.; Peters, J. (2021). Robot Reinforcement Learning on the Constraint
Manifold, Proceedings of the Conference on Robot Learning (CoRL). Davide Puze
Kicki, P.; Liu, P.; Tateo, D.; Bou Ammar, H.; Walas, K.; Skrzypczynski, P.; Peters, J. (2024). Fast Kinodynamic :

Planning on the Constraint Manifold with Deep Neural Networks, IEEE Trans. on Robotics Tateo Liu
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|. Inductive Bias: Stay close to your training data!

2. Inductive Bias: Use modular policy structure for composition!

3. Inductive Bias: Use physically consistent models!

4. Inductive Bias: Control your optimization biases!

5. Inductive Bias: Use your constraints to direct your exploration!

6. Inductive Bias
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Let your body go with the
flow...



Dieter Buchler

Classical robotics builds the best body that can be
controlled with classical approaches!

Human bodies would defy such an approach but
generate high accelerations in order to

® reach high velocities

® perform skillful motions

~ Humans learn (typically) without breaking!

eS:. ‘ B Human performance robot learning needs
e ] better bodies!

Ia .




Bodies for Learning k ’

Dieter Buchler

High accelerations require

® strong actuators (pneumatic artificial muscles;
|,2kN)

® small moving masses (700g)
Antagonistic actuation

® prevents damages to the robot

® enables compliance

) Built for performance and learning not feedback
control!

&7 TECHNISCHE
N—7):
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IHE Buechler, D.; Calandra, R.; Peters, J. (2022). Learning to Control Highly Accelerated Ballistic Movements
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Learning Robot Table Tennis

from Scratch

Dieter Simon
Buchler Guist

Training to hit a simulated ball!

Buechler, D.; Quist, S.; Calandra,R:; Be
Muscular Robog ransactions on




Learning Robot Table Tennis

Dieter

from Scratch

Training to hit
Emme—— a 'eal ball!

""""

: o
.......

——

opD‘SK 19

@TSP Eur
V ﬁ pf, B.; Peters,
pbotics (T-Ro).

e
s

J. (2022). Learning to Play Table Tennis From Scf?‘fi:‘haging
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2. Inductive Bias

Let the natural robot
dynamics guide your
learning process!

Ia ;




i

Conclusion:
Use your inductive biases!

|. Inductive Bias: Stay close to your training data!

2. Inductive Bias: Use modular policy structure for composition!

3. Inductive Bias: Use physically consistent models!

4. Inductive Bias: Control your optimization biases!

5. Inductive Bias: Use your constraints to direct your exploration!

6. Inductive Bias: Let the natural robot dynamics guide your learning
process!

Thanks for your attention!
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inductive biases
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Outline

|. Inductive Bias: Stay close to your training data!

2. Inductive Bias: Use modular policy structure for composition!
3.Inductive Bias: Use physically consistent models!

4. Inductive Bias: Control your optimization biases!

5. Inductive Bias: Use your constraints to direct your exploration!

6. Inductive Bias
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Even If we had a perfect
task model ...

... we still need to find a
solution to this task with
limited resources




Pascal
Klink

Curriculum
Reinforcement Learning

Task Complexity

Klink, P. et al. (2021) A Probabilistic Interpretation of Self-Paced Learning with Applications to RL, JMLR
Klink, P. et al. (2022). Curriculum Reinforcement Learning via Constrained Optimal Transport, ICML



Pascal
Klink

Curriculum
Reinforcement Learning

EXECUTION
AFTER 250 ITE

SIMULATION

Klink, P. et al. (2021) A Probabilistic Interpretation of Self-Paced Learning with Applications to RL, JMLR
Klink, P. et al. (2022). Curriculum Reinforcement Learning via Constrained Optimal Transport, ICML



N. Inductive Bias

Control your optimization
complexity

Ia .



Long horizon
manipulation is
challenging ...



Niklas Funk

® Having to build arbitrary 3D structures
given a set of building blocks

® Robot-in-the-loop
® Ensuring structural stability

= ?_fold Combinatorial Complexity:
® Which parts to place where

® [Execution sequence

§\¢4___Cfﬁ}:z TECHNISCHE

g:'(@’“/ UNIVERSITAT
%@))ZQ> DARMSTADT

Funk, N.; Belousov, B.; Chalvatzaki, G.; Peters, J. (2021). Learn2assemble with structured representations
and search for robotic architectural construction. 61l




Encoded graph

Input Scene Input Graph Representation 3 rounds of message passing
N Q-estimation for
/(/' all MILP actions

/\NLh.'ads
~

Single attention head per node

v, k
vk 4 -~
» .
O - my \ sobimax(c, t
'
- »
2N
1
LA

Exploit graph-based Eventually add prior
representation knowledge from Mixed

Integer Optimization

Funk, N.; Menzenbach, S.; Chalvatzaki, G.;
Peters, J. (2022). Graph-based Reinforcement
Learning meets Mixed Integer Programs: An
application to 3D robot assembly discovery.

¥ Funk, N.; Belousov, B.; Chalvatzaki, G.; Peters, J. (2021). Learn2assemble with structured LENCI\H/ENREEXE
representations and search for robotic architectural coggtruction. DARMSTADT



Resulting Assembly Policies

Niklas Funk

x16

1

Simulation Real-world transfer

B Graph-based representations allow generalization across scenes

. Funk, N.; Belousov, B.; Chalvatzaki, G.; Peters, J. (2021). Learn2assemble with structured
representations and search for robotic architectural coggtruction.




2. Inductive Bias

Use structured
representations to enable
generalization!
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What about
dynamic and dense
environment?



2

Rierarchical Policy Blending |

® Motion generation in
dense and dynamic environments;

® Reactive policies:
- Ensure fast response;
- Risk of suboptimal behavior;

® Planning-based approaches:
- Provide feasible trajectories;
- High computational cost;

® Trade-off:
- Safety vs Performance

Hansel, K.; Urain, J.; Peters, J.; Chalvatzaki, G. (2022). Hierarchical Policy Blending as Inference for ;
4 TECHNISCHE
o\

; Reactive Robot Control. =2 UNIVERSITAT
Le, A. T.; Hansel, K.; Peters, J.; Chalvatzaki, G. (2022). glierarchical Policy Blending As Optimal Transport<;: 3 DARMSTADT




B Adaptive Policy Blending enables safe and feasible robot motions
across dense and dynamic environments.

HiPBI:

- Adopts Probabilistic Inference methods;
- Samping-Based Stochastic Optimization;

Hansel, K.; Urain, J.; Peters, J.; Chalvatzaki, G. (2022).
Hierarchical Policy Blending as Inference for Reactive Robot
Control.

ia

HiPBOT:

- Leverages unbalanced optimal transport;
- Entropic-Regularized Linear Programming;

Le, A. T.; Hansel, K.; Peters, J.; Chalvatzaki, G. (2022). Hierarchical
Policy Blending As Optimal Transport

&7 TECHNISCHE
2(@)~) UNIVERSITAT
Y¢P— DARMSTADT
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2. Inductive Bias

Inductive biases as
hierarchical optimization
for adaptive blending
experts!

Ia 68




Learning to deal with
environmental variations
or uncertainties?



: : &
Robust Reinforcement Learning i

Nominal MDP

® Reinforcement Learning:
® Assumes underlying MDP

® Struggles with:
- Uncertainties;
- Disturbances;
- or structural changes in env

o Ealienn ® How to achieve "robustness"?

P .
J '( L UL = =l By,

) Formalizing an Adversarial framework;
® Worst-Case design

| Eaviroamens | = —— ® How to define the adversary!?

— —
-~

Adversarial MDP

&7 TECHNISCHE
E(@/ UNIVERSITAT

IHE Hansel, K.; Moos, J.; Abdulsamad H.; Stark S.; Clever D.; Peters, J. (2022). Robust Reinforcement
%' DARMSTADT

Learning: A Review of Foundations and Recent Advanggs



: . A
Robust Reinforcement Learning §

Transition-Robust-Design Disturbance-Robust-Design

L

(S
Advergary
A A

Falzva | 8. 04}

ovironment

Pratagoniat

Robustness in
Reinforcement Learning

via
Adversarial Design

Environment

Protagnmist | 1

Action-Robust-Design Observation-Robust-Design
— Hansel, K.; Moos, J.; Abdulsamad H.; Stark S.; Clever D.; Peters, J. (2022). Robust Reinforcement TECHNISCHE
IHE Learning: A Review of Foundations and Recent Advan%?s UNIVERSITAT
DARMSTADT




2. Inductive Bias

Use adversarial design as
Inductive bias to improve
robustness!
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Where to learn in
contact-rich tasks?



Imitation and Residual Learning %

® | earning contact-rich assembly tasks in simulation is hard and does not transfer
well

® We need methods to learn directly in the real system

® Adapt demonstrations from imitation learning with residual learning

Use the variability in human-demonstrations as an inductive bias for exploration

- Carvalho, J.; Koert, D.; Daniv, M.; Peters, J. (2022). Adapting Object-Centric Probabilistic Movement
IHE Primitives with Residual Reinforcement Learning, 2022 IEEE-RAS 21st International Conference on
Humanoid Robots (Humanoids) /




Imitation and Residual Learning ‘?
&

-

Joao Carvalho

® Residual learning combines a nominal policy and a learned policy

7‘_((1' I, {') 4 (V"Tnmnz mg. S8, {')

= (8, t)Tom(8. 1) ® B(s,t)me(als, t)

® Given demonstrations of an insertion task,
choose where to learn the residual based
on the demonstrations' variance

Original ProMP ~ —— Conditioned ProMP

- Carvalho, J.; Koert, D.; Daniv, M.; Peters, J. (2022). Adapting Object-Centric Probabilistic Movement
IHE Primitives with Residual Reinforcement Learning, 2022 %IEEE-RAS 21st International Conference on

Humanoid Robots (Humanoids)
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Joao Carvalho

Imitation and Residual Learning

DEMONSTRATIONS

Collact Trajectcrias Object Centric PraMP
m g g i
ONLINE LEARNING |
Nominal Folicy ENVIRONMENT

Mo . N Adaptation a | & _[Soft Actor-Critic
e e, ) B s, Irelel ] ‘ als) o m)
—— x | g

Candition on Iniclal pose T

Cartecian Impadanca |

Disabling the nominal controller-
and replacing it with the RL =
policy near the goal results in

random exploration, which takes

more time to solve the task. | | | i
- Carvalho, J.; Koert, D.; Daniv, M.; Peters, J. (2022). Adapting Object-Centric Probabilistic Movement W7 TECHNISCHE
IHE Primitives with Residual Reinforcement Learning, ZOZZ%EEE-RAS 21st International Conference on 7/=\ UNIVERSITAT
DARMSTADT

Humanoid Robots (Humanoids)



2. Inductive Bias

Use nominal policies and
residual reinforcement
learning to learn in the

real system.

Ia .




Data of real robotic
systems Is extremely
scarce - we cannot afford
to be wasteful!



Active Model Learning

® How do we make sure the data we
collect of the system is as useful for
model-learning as possible!?

® Maximize Information Gain w.r.t the

model!
T
max MI(Y, (o,rya) | m0) +8Ep, vy ) E r_
T=F-+1
A ~/ - N v -y
Expected Information Gain Expected Reward

® Augment with expected reward to
explore promising regions more
thoroughly

The robot has to push the red ball into the target zone
at the top of the table. The tilted table and a sparse
reward make this task impossible to solve for classical
RL approaches.

ae Schneider, T; Belousov, B; Chalvatzaki, G.; Romeres, D; Jha, D.K.; Peters, J. (2022). - TE[\‘ﬁ\'jEngﬁHE
Active exploration for robotic manipulation, Internationgl Conference on Intelligent Robots and Systems %@i k B AR N\ETAST




Active Model Learning

BN

Tim Schneider
Episode O Episode 201

Our method explores this challenging environment efficiently and solves the task

¥ Schneider, T; Belousov, B; Chalvatzaki, G.; Romeres, D; Jha, D.K.; Peters, J. (2022). <7 TECl\H/EN'SﬁHE
Active exploration for robotic manipulation, Internatioggl Conference on Intelligent Robots and Systems % B;N\R N\'ESTA/ST




Active Model Learning

Tim Schneider

fully automated training - ~25h of training each - 6 configurations

/ ‘, - p
“ - ./QV
, e B
- ey

\

s TECHNISCHE
UNIVERSITAT
DARMSTADT

ae Schneider, T; Belousov, B; Chalvatzaki, G.; Romeres, D; Jha, D.K.; Peters, J. (2022).
Active exploration for robotic manipulation, Internatioggal Conference on Intelligent Robots and Systems %



Active Model Learning

How did we do it! Fully automated training!

Tirﬁ "'Stchneider

IHE Schneider, T; Belousov, B; Chalvatzaki, G.; Romeres, D; Jha, D.K.; Peters, J. (2022). 42 LE[\ICICENQEXE
Active exploration for robotic manipulation, Internatioggl Conference on Intelligent Robots and Systems %0 DARMSTADT



2. Inductive Bias

Control your system in a
maximally informative way
for model learning

Ia .




Stable Vector Fields |
for Goal-Conditioned Tasks -~

Tateo Urain
® | ot of desirable robot behaviours aims to arrive to a specific target.

® Simple solution: Linear attractor

X = _(X — Xta'r)

® How can we learn nonlinear attractors!?

® Exploit the diffeomorphic function @ of the Normalising Flows

X = —Jq;(q)_l(X) — (I)_l(Xtafr))

¥ Urain, J.; Ginesi, M; Tateo, D.; Peters, J. (2020).
ImitationFlow: Learning Deep Stable Stochastic Dynargig Systems by Normalising Flows. IROS



https://www.youtube.com/watch?v=HWHIVrJCbYY

Stable Vector Fields in Manifolds

Davide Julen
Tateo Urain

® To represent Stable Vector Fields for Orientations, we require to
represent vector fields in non-Euclidean manifolds

Stable Vector Fields in SE(3) (Position + Orientation) Stable Vector Fields in Mobius Strip

S
7,

wa,(,

A - '
A

¥ Urain, J., M; Tateo, D.; Peters, J. (2022). e ; TECHNISCHE
Learning Stable Vector Fields on Lie groups. RA-L 85

7/=\ UNIVERSITAT
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Diffusion Models in Robotics

Niklas Georgia Julen
Funk Chalvatzaki Urain

® Diffusion models are perfect candidates to represent dense and
smooth cost functions in trajectory optimisation.

® Diffusion Models propose learning a function Sg (7‘) that represents
the score function of a data distribution Sy (7’) = V., log qp (7‘)

® Then,we can run an inverse diffusion process to generate samples
from gp (7‘) o2
Tp—1 = Tk ZvalogQD(Tk)_I_ake ,  e~N(0,1)

® Note that if we substitute log q(7% ) = Z ci(7) then, we have
a gradient-based trajectory optimiser. 1

- Urain, J.; Funk, N; Peters, J. ; Chalvatzaki G (2023).
IHE SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through
diffusion (ICRA). 86




6D-Grasp Diffusion Models

for joint grasp and motion optimization

NiIaS Georgia Julen
Funk Chalvatzaki Urain

® We learn a diffusion model representing a distribution of SE(3)
grasp poses for a variety of objects

fo(H) =loggp(H) , H e SE(3)

- Urain, J.; Funk, N; Peters, J. ; Chalvatzaki G (2023).
IHE SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through
diffusion (ICRA). 87
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6D-Grasp Diffusion Models

for joint grasp and motion optimization

Niklas Georgia Julen
Funk Chalvatzaki Urain

® We combine the learned grasp diffusion model with heuristic
costs(obstacle avoidance, joint limits...) and generate trajectories
to solve complex pick and place tasks

- Urain, J.; Funk, N; Peters, J. ; Chalvatzaki G (2023).
IHE SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through
diffusion (ICRA). 88



https://www.youtube.com/watch?v=REPcqxjLnWI

Learning smooth cost functions
for complex tasks

An Thai Georgia Julen
Lee Chalvatzaki Urain

® We apply similar approaches to learn more complex behaviours
such as pouring and combine it with additional cost functions

74 TECHNISCHE
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Learning Implicit priors for motion optimisation (IROSjq


https://www.youtube.com/watch?v=rudoFJxuP_U
https://www.youtube.com/watch?v=AYbSfncK08M

2. Inductive Bias

Temporal smoothness of
action sequences

Ia .




Inferring smooth control

Joe
Watson

® FEvery good roboticist knows that robots like smooth actions,
but this is hard to achieve in settings such as sample-based
model predictive control.

® How can we achieve this?
® Filter the actions — introduces delay!
® Sample smoothed noise — won’t preserve smoothness!

® Movement primitives — requires handcrafted features!

Coloured Noise (8=2.5)

Watson, J; Peters, J. (2022).
IHE Inferring smooth control: Monte Carlo Posterior Policy Iteration with Gaussian Processes (CoRL) [oral].
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Inferring smooth control

® When using REPS, our update looks like a Bayesian posterior  Watson
q(0) x exp(a R(0) p(0), which we call a ‘pseudo’-posterior

® |n the context of MPC, we are optimising an open-loop action
sequence A = [a,a,, a5, ...]

® TJo encode smoothness we can design a continuous-time
Gaussian process (GP) prior, p(a | t) = GP(u(?), 2(¢))

® REPS-style optimization can be implemented as inference on the
GP, with Kalman filter-like updates each time step

SE Kernel (1-0.2)

Watson, J; Peters, J. (2022).
IHE Inferring smooth control: Monte Carlo Posterior Policy Iteration with Gaussian Processes (CoRL) [oral].
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Inferring smooth control

Watson

® This approach scales to high-dimensional MPC and dramatically
changes the solution

Squared exponential kernel White noise kernel

door-v0 door-v()

Actions

100 200 | 100 200

Timesteps Timesteps

Watson, J; Peters, J. (2022).
IHE Inferring smooth control: Monte Carlo Posterior Policy Iteration with Gaussian Processes (CoRL) [oral].
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Learning State Automated Stability Proofs
Representations for Robotics

[ .earned Coantroller

Dvnamics GT

Self-Paced Robot Reinforcement Learning

(Simone Parisi

@ ML)

SELF-PACED CONTEXTUAL
REINFORCEMENT LEARNING (SPRL)

Pascal Klink, Hany Azdulsamad, Boris Belousov, Jan Peters

b ligunt A turanees Srater o, TJ Danntadt

SPARSE BALL-IN-A-CUP TASK
Inferring

Hybrid Control
From Data

Tactile Skill Libraries

(Hany Abdulsamad |
@ LCNYS)

(Boris Belousov

@ Humanoids+AiC) !., 95

(Okan Ko¢ @ R-AL/

ICRA)



Sample Eff‘uent Off-Pollc Gradients

Seal System Generalized
Mean

Estimation
with MCTS

Imitation of
Race Car Drlvers

w",z 1

(Daniel Tanneberg
@ Nature Ml)

(Stefan Léckel
@ IEEE R-AL)

—
s000
iterations U tor training iteratons (U for rainingl

Stochastic Optimal Control
by Approximate Input Inference

Multi-Objective
Reinforcement Learning

Machine
Learning

(Simone Parisi @ NECO)



Human-like Experience Reuse Spiking Neural Models
A B

U
I NIy
AT oS “EEEET
2
g oAV 2l i | &
(Svenja Stark @ IROS) ‘ :
el N
(Daniel
Tanneberg
" @ Neural
Human Ball ’ Networks)
Catching _‘
i A (Boris Belousov

@ NeurlPS)

Trajectory Similarity Measures

(Dorothea Koert
@ R-AL/IROS)
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Demonstration of Pouring
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Demonstration of Pouring




