

So where have robots been successful?

Whenever we adapt tasks to robots! We need to adapt robots to tasks!

Adapting Robots to Tasks?

Do Robot Learning?

Robot Learning...

- Classical robot engineering is really good at adapting tasks to the robot!
- Data is very expensive!
- If you can learn in a robot simulator, you don't need RL!
- Things break!
- Generalization is often impossible: "Golf does not help Hockey!" (John Milton)
- Learning in Real-Time
- Computation, communication and energy limitations...

... is not a straightforward answer!

Robot Reinforcement Learning requires...

Robotics Inductive Biases An inductive bias allows a learning algorithm to prioritize one solution (or interpretation) over another, independent of the observed data. [...]

Inductive biases can express assumptions about either the datagenerating process or the space of solutions.

(Mitchell, 1980; Battaglia et al., 2018)

Robot Reinforcement Learning requires...

Robotics Inductive Biases

What inductive biases does robotics offer? How can we use them for improving robot reinforcement learning?

Outline

- I. Inductive Bias
- 2. Inductive Bias
- 3. Inductive Bias
- 4. Inductive Bias
- 5. Inductive Bias
- 6. Inductive Bias

Imitation Learning is always easier than Reinforcement Learning

Imitation Learning

Model-Based Behavioral Cloning (Englert et al.) Objective: Policy Similarity

$$\max_{\boldsymbol{\pi}, \mu^{\boldsymbol{\pi}}} J(\boldsymbol{\pi}) = \sum_{\boldsymbol{s}, \boldsymbol{a}} \mu^{\boldsymbol{\pi}}(\boldsymbol{s}) \pi(\boldsymbol{a}|\boldsymbol{s}) \log \frac{\mu^{\boldsymbol{\pi}}(\boldsymbol{s}) \pi(\boldsymbol{a}|\boldsymbol{s})}{q(\boldsymbol{s}, \boldsymbol{a})}$$

Model-Free
Behavioral
Cloning
(Michie & Chambers,
Sammut et al.)

Constraints: Assumptions on the Policy

$$\mu^{\pi}(s') = \sum_{s,a} \mathcal{P}_{ss'}^{a} \mu^{\pi}(s) \pi(a|s)$$
$$1 = \sum_{s,a} \mu^{\pi}(s) \pi(a|s)$$

Dual Problem

Putermann (1998) implies: *IRL is harder than MBC!*

Dual Function for Minimal Physics

Inverse Reinforcement Learning

(Ziebart et al.; Boularias et al.)

Solve for the optimal parametric policy class:
Motor primitives

(Schaal et al; Kober et al; Paraschos et al; Gomez-Gonzalez)

Learning Perception-adapted Probabilistic Motor Primitives

Learning from human demonstrations

Reinforcement Learning Problem

Dual: RL by Linear Programming Objective: Expected Returns

$$\max_{\pi,\mu^\pi} J(\pi) = \sum_{\boldsymbol{s},\boldsymbol{a}} \mu^\pi(\boldsymbol{s}) \pi(\boldsymbol{a}|\boldsymbol{s}) \mathcal{R}_{\boldsymbol{s}\boldsymbol{a}}$$

Constraints: Assumptions on the Policy

$$\mu^{\pi}(s') = \sum_{oldsymbol{s},oldsymbol{a}} \mathcal{P}^{oldsymbol{a}}_{oldsymbol{s}s'}\mu^{\pi}(oldsymbol{s})\pi(oldsymbol{a}|oldsymbol{s})$$

$$1 = \sum_{oldsymbol{s},oldsymbol{a}} \mu^{\pi}(oldsymbol{s})\pi(oldsymbol{a}|oldsymbol{s})$$

Dual Problem

Primal: RL by Linear Programming

"Bellman Equation":

Bellman's

Principle of

Optimality

$$V^*(s) = \max_{a} E_{s'} \{ r(s, a, s') + \gamma V(s') \}$$

No natural notion of data!

1. Inductive Bias

Robotics
Inductive
Bias

Stay close to your training data

Relative Entropy Policy Search

Objective: Expected Returns

$$\max_{\pi,\mu^\pi} J(\pi) = \sum_{\boldsymbol{s},\boldsymbol{a}} \mu^\pi(\boldsymbol{s}) \pi(\boldsymbol{a}|\boldsymbol{s}) \mathcal{R}_{\boldsymbol{s}\boldsymbol{a}}$$

Dual: RL by Linear Programming

Constraints: Assumptions on the Policy

$$\mu^{\pi}(s') = \sum_{s,a} \mathcal{P}_{ss'}^{a} \mu^{\pi}(s) \pi(a|s)$$
$$1 = \sum_{s,a} \mu^{\pi}(s) \pi(a|s)$$

Peters (2007). Relative Entropy Policy Search, Tech. Rep. Peters, Muelling, Altun (2010). Relative Entropy Policy Search, AAAI

Further Constraint: Policy Similarity

$$\epsilon \geq \sum_{\boldsymbol{s}, \boldsymbol{a}} \mu^{\pi}(\boldsymbol{s}) \pi(\boldsymbol{a}|\boldsymbol{s}) \log \frac{\mu^{\pi}(\boldsymbol{s}) \pi(\boldsymbol{a}|\boldsymbol{s})}{q(\boldsymbol{s}, \boldsymbol{a})}$$

Objective from Behavioral Cloning

Different q yield analytical solution, mellow/softmax, entropy regularization, SAC, ...

Natural policy gradients/NAC/TRPO are approximations!

Outline

- 1. Inductive Bias: Stay close to your training data!
- 2. Inductive Bias
- 3. Inductive Bias
- 4. Inductive Bias
- 5. Inductive Bias
- 6. Inductive Bias

(Robot) Movement is composed only of strokes or rhythmic behavior

Learning from a single long demonstration...

Rudolf Lioutikov

DARMSTADT

Lioutikov, R.; Neumann, G.; Maeda, G.; Peters, J. Learning Movement Primitive Libraries through Probabilistic Segmentation, International Journal of Robotics Research

...generates modular movement libraries!

DARMSTADT

Lioutikov, R.; Neumann, G.; Maeda, G.; Peters, J. Learning Movement Primitive Libraries through Probabilistic Segmentation, International Journal of Robotics Research (IJRR).

2. Inductive Bias

Robotics Inductive Bias

Use modular policy structure for composition!

Modular Control Policies

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. Learning to Select and Generalize Striking Movements in Robot

Table Tennis, International Journal on Robotice Research Tennis, International Journal on Robotice Research Tennis (INIVERSITY)

"Naïve" Extension of REPS

Relative Entropy Policy Search (REPS)

$$\max_{\pi,\mu^{\pi}} J(\pi) = \sum_{s,a} \mu^{\pi}(s) \pi(a|s) \mathcal{R}_{sa} \quad \text{Maximize reward}$$

$$1 = \sum_{s,a} \mu^{\pi}(s) \pi(a|s) \quad \text{Probability distribution}$$

$$\mu^{\pi}(s') = \sum_{s,a} \mathcal{P}^{a}_{ss'} \mu^{\pi}(s) \pi(a|s) \quad \text{Follow system dynamics}$$

$$\epsilon \geq \sum_{s,a} \mu^{\pi}(s) \pi(a|s) \log \frac{\mu^{\pi}(s) \pi(a|s)}{q(s,a)} \quad \text{Close to training data (no wild exploration)}$$

Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. Learning to Select and Generalize Striking Movements in Robot Table Tennis, International Journal on Robotics Research.

Problems with Naïvety

Christian Daniel

Localized behavior can be learned efficiently!

Good performance

Fast reduction in the number of primitives

Daniel, Neumann & Peters. Hierarchical Relative Entropy Policy Search, JMLR

Tetherball average reward achieved

Outline

- I. Inductive Bias: Stay close to your training data!
- 2. Inductive Bias: Use modular policy structure for composition!
- 3. Inductive Bias
- 4. Inductive Bias
- 5. Inductive Bias
- 6. Inductive Bias

Models can be very powerful, but errors in models are often exploited by RL algorithms...

Model-based RL with Differentiable Physics Models

Michael Lutter

Differentiable Newton Euler Algorithm:

$$\sum_{i=0}^{N} f_i = \mathbf{I}_{\theta} \dot{\mathbf{V}} \quad \text{s.t.} \quad c(\mathbf{q}; \, \theta) = 0, \qquad c(\mathbf{x}; \theta) \leq 0$$

with the physics parameters θ consisting of inertia, mass, lengths, center of mass, string length, etc..

Learn Ball in a Cup via offline MBRL:

- Record dataset on the physical manipulator
- (2) Learn model using the recorded data
- (3) Learn trajectory with learned model & eREPS
- (4) Evaluate learnt trajectory on the real WAM

Performance based on 4min of Motor Babbling

Michael Lutter

Structured models enable out of distribution generalization.

- DiffNEA extrapolated to completely unseen states
- For MBRL generalization *might* be more important than perfect prediction

Lutter, M.; Silberbauer, J.; Watson, J.; Peters, J. (Submitted). A Differentiable Newton-Euler Algorithm for Real-World Robotics, Submitted to the IEEE Transaction of Robotics (T-RO).

Lutter, M.; Silberbauer, J.; Watson, J.; Peters, J. (2021). Differentiable Physics Models for Real-world Offline Model-based Reinforcement Learning, ICRA.

Lutter, M.; Ritter, C.; Peters, J. (2019). Deep Lagrangian
Networks: Using Physics as Model
Prior for Deep Learning,
International Conference on
Learning Representations (ICLR).

Michael Lutter

3. Inductive Bias

Robotics
Inductive
Bias

Use physically consistent models!

Simulation Captimization Biasm(SattoB?)

$$G(\theta) = E_{\xi} \left\{ \max_{\hat{\theta}} \frac{1}{N} \sum_{i}^{N} J(\hat{\theta}, \xi) \right\} - \max_{\theta} E_{\xi} \left\{ \frac{1}{N} \sum_{i}^{N} J(\theta, \xi) \right\} \ge 0$$

Optimal Solution for Samples

True Optimal Solution

We are guaranteed to be wrong! Fabio Muratore

SPOTA controls the S.O.B.

Muratore, F. et al. (2022). Assessing Transferability from Simulation to Reality for Reinforcement Learning, PAMI

4. Inductive Bias

Robotics
Inductive
Bias

Control your optimization bias

Outline

- I. Inductive Bias: Stay close to your training data!
- 2. Inductive Bias: Use modular policy structure for composition!
- 3. Inductive Bias: Use physically consistent models!
- 4. Inductive Bias: Control your optimization biases!
- 5. Inductive Bias: Use your constraints to direct your exploration!
- 6. Inductive Bias

The fastest way to destroy a robot system is by exploration...

Safe Exploration

Davide Tateo

le Puze D Liu

$$egin{aligned} \max_{ heta} & \mathbb{E}_{s_t,a_t} \left[\sum_{t=0}^T \gamma^t r(s_t,a_t)
ight], \ & ext{s. t.} & f(q_t) = 0, \quad g(q_t) \leq 0 \ & s_t = [q_t \; x_t]^{ ext{T}} \end{aligned}$$

Robotics problems hide their difficulties in the constraints!

4. Inductive Bias

Robotics Inductive Bias

Use your constraints to direct your exploration!

Exploration on the Constraint Manifold

Davide Tateo

e Puze Liu

I. Construct the constraint manifold

$$\mathcal{M}_c: c(q)=0$$

- 2. Determine the bases N_c of the tangent space \mathcal{T}_c
- 3. Sample state velocity in the tangent space

Manifold Maintenance

$$\left[egin{array}{c} \ddot{q}_t \ \dot{\mu}_t \end{array}
ight] = N_c(q_t,\mu_t)lpha_t -J_c^\dagger(q_t,\mu_t)\psi(q_t,\dot{q}_t) -J_c^\dagger(q_t,\mu_t)K_cc(q_t,\dot{q}_t,\mu_t)$$

Learning Process

Piotr Davide Kicki Tateo

Puze Liu

Smash Cut Repel Prepare

Piotr Kicki

tr Haitham ki Bou Ammar

Lissajous Hitting

Dynamic Hitting

de Puze o Liu

Liu, P.; Tateo, D.; Bou-Ammar, H.; Peters, J. (2021). Robot Reinforcement Learning on the Constraint Manifold, Proceedings of the Conference on Robot Learning (CoRL). Kicki, P.; Liu, P.; Tateo, D.; Bou Ammar, H.; Walas, K.; Skrzypczynski, P.; Peters, J. (2024). Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural Networks, IEEE Trans. on Robotics

Outline

- I. Inductive Bias: Stay close to your training data!
- 2. Inductive Bias: Use modular policy structure for composition!
- 3. Inductive Bias: Use physically consistent models!
- 4. Inductive Bias: Control your optimization biases!
- 5. Inductive Bias: Use your constraints to direct your exploration!
- 6. Inductive Bias

Let your body go with the flow...

Robot Bodies for Learning?

Dieter Büchler

Classical robotics builds the best body that can be controlled with classical approaches!

Human bodies would defy such an approach but generate high accelerations in order to

- reach high velocities
- perform skillful motions

Humans learn (typically) without breaking!

Human performance robot learning needs better bodies!

Bodies for Learning

Dieter Büchler

High accelerations require

- strong actuators (pneumatic artificial muscles; I,2kN)
- small moving masses (700g)

Antagonistic actuation

- prevents damages to the robot
- enables compliance
- Built for performance and learning *not* feedback control!

Learning Robot Table Tennis from Scratch

Learning Robot Table Tennis from Scratch

Simon Guist

2. Inductive Bias

Robotics Inductive Bias

Let the natural robot dynamics guide your learning process!

Conclusion: Use your inductive biases!

- I. Inductive Bias: Stay close to your training data!
- 2. Inductive Bias: Use modular policy structure for composition!
- 3. Inductive Bias: Use physically consistent models!
- 4. Inductive Bias: Control your optimization biases!
- 5. Inductive Bias: Use your constraints to direct your exploration!
- 6. Inductive Bias: Let the natural robot dynamics guide your learning process!

Thanks for your attention!

Outline

- I. Inductive Bias: Stay close to your training data!
- 2. Inductive Bias: Use modular policy structure for composition!
- 3.Inductive Bias: Use physically consistent models!
- 4. Inductive Bias: Control your optimization biases!
- 5. Inductive Bias: Use your constraints to direct your exploration!
- 6. Inductive Bias

Even if we had a perfect task model ...

... we still need to find a solution to this task with limited resources

Curriculum Reinforcement Learning

Task Complexity

Klink, P. et al. (2021) A Probabilistic Interpretation of Self-Paced Learning with Applications to RL, JMLR Klink, P. et al. (2022). Curriculum Reinforcement Learning via Constrained Optimal Transport, ICML

Curriculum Reinforcement Learning

Klink, P. et al. (2021) A Probabilistic Interpretation of Self-Paced Learning with Applications to RL, JMLR Klink, P. et al. (2022). Curriculum Reinforcement Learning via Constrained Optimal Transport, ICML

N. Inductive Bias

(Robotics)
Inductive
Bias

Control your optimization complexity

Long horizon manipulation is challenging ...

Robot Assembly Discovery (RAD)

Niklas Funk

- Having to build arbitrary 3D structures given a set of building blocks
- Robot-in-the-loop
- Ensuring structural stability
- → 2-fold Combinatorial Complexity:
- Which parts to place where
- Execution sequence

Graph-based RL for RAD

Niklas Funk

Exploit graph-based representation

Eventually add prior knowledge from Mixed Integer Optimization

Funk, N.; Menzenbach, S.; Chalvatzaki, G.; Peters, J. (2022). Graph-based Reinforcement Learning meets Mixed Integer Programs: An application to 3D robot assembly discovery.

Resulting Assembly Policies

Niklas Funk

Simulation

Real-world transfer

Graph-based representations allow generalization across scenes

2. Inductive Bias

Robotics Inductive Bias

Use structured representations to enable generalization!

What about dynamic and dense environment?

Hierarchical Policy Blending

- Motion generation in dense and dynamic environments;
- Reactive policies:
 - Ensure fast response;
 - Risk of suboptimal behavior;
- Planning-based approaches:
 - Provide feasible trajectories;
 - High computational cost;
- Trade-off:
 - Safety vs Performance

Hierarchical Policy Blending

HiPBI:

- Adopts Probabilistic Inference methods;
- Samping-Based Stochastic Optimization;

Hansel, K.; Urain, J.; Peters, J.; Chalvatzaki, G. (2022). Hierarchical Policy Blending as Inference for Reactive Robot Control.

HiPBOT:

- Leverages unbalanced optimal transport;
- Entropic-Regularized Linear Programming;

Le, A. T.; Hansel, K.; Peters, J.; Chalvatzaki, G. (2022). Hierarchical Policy Blending As Optimal Transport

2. Inductive Bias

Robotics Inductive Bias

Inductive biases as hierarchical optimization for adaptive blending experts!

Learning to deal with environmental variations or uncertainties?

Robust Reinforcement Learning

Nominal MDP

- Reinforcement Learning:
 - Assumes underlying MDP
 - Struggles with:
 - Uncertainties;
 - Disturbances;
 - or structural changes in env
 - How to achieve "robustness"?
- Formalizing an Adversarial framework;
 - Worst-Case design
 - How to define the adversary?

Robust Reinforcement Learning

Transition-Robust-Design

Disturbance-Robust-Design

External Forces

 $P(s_{t+1} \mid s_t, a_t, \bar{a}_t)$

Environment

Protagonist

Adversary

8++1

 r_{i+1}

Robustness in Reinforcement Learning

via

Adversarial Design

Action-Robust-Design

Observation-Robust-Design

2. Inductive Bias

Robotics Inductive Bias Use adversarial design as inductive bias to improve robustness!

Where to learn in contact-rich tasks?

Imitation and Residual Learning

Joao Carvalho

- Learning contact-rich assembly tasks in simulation is hard and does not transfer well
- We need methods to learn directly in the real system
- Adapt demonstrations from imitation learning with residual learning

Use the variability in human-demonstrations as an inductive bias for exploration

Imitation and Residual Learning

Joao Carvalho

ullet Residual learning combines a nominal policy $\pi_{ ext{nom}}$ and a learned policy $\pi_{ heta}$

$$\pi(\boldsymbol{a}|\boldsymbol{s},t) = \Psi(\pi_{\text{nom}}, \pi_{\theta}, \boldsymbol{s}, \boldsymbol{a}, t)$$

$$= \alpha(\boldsymbol{s},t)\pi_{\text{nom}}(\boldsymbol{s},t) \oplus \beta(\boldsymbol{s},t)\pi_{\theta}(\boldsymbol{a}|\boldsymbol{s},t)$$

 Given demonstrations of an insertion task, choose where to learn the residual based on the demonstrations' variance

Imitation and Residual Learning

Joao Carvalho

ptation

2. Inductive Bias

Robotics Inductive Bias Use nominal policies and residual reinforcement learning to learn in the real system.

Data of real robotic systems is extremely scarce - we cannot afford to be wasteful!

The robot has to push the red ball into the target zone at the top of the table. The tilted table and a sparse reward make this task impossible to solve for classical RL approaches.

- How do we make sure the data we collect of the system is as useful for model-learning as possible?
- Maximize Information Gain w.r.t the model!

$$\max_{\pi} \quad \text{MI}(\theta, (\mathbf{x}, \mathbf{r}, \mathbf{a}) \mid \pi, x_t) + \beta \mathbb{E}_{P_{\pi}(r_{t+1:T})} \left[\sum_{\tau=t+1}^{T} r_{\tau} \right]$$
Expected Information Gain Expected Reward

 Augment with expected reward to explore promising regions more thoroughly

Our method explores this challenging environment efficiently and solves the task

Tim Schneider

fully automated training - ~25h of training each - 6 configurations

Our method solves this task by training on the real system from scratch for 5/6 configurations

How did we do it? Fully automated training!

2. Inductive Bias

Robotics Inductive Bias

Control your system in a maximally informative way for model learning

Stable Vector Fields for Goal-Conditioned Tasks

Davide Tateo

Julen Urain

- Lot of desirable robot behaviours aims to arrive to a specific target.
- Simple solution: Linear attractor

$$\dot{\mathbf{x}} = -(\mathbf{x} - \mathbf{x}_{tar})$$

- How can we learn nonlinear attractors?
- ullet Exploit the diffeomorphic function Φ of the Normalising Flows

$$\dot{\mathbf{x}} = -\mathbf{J}_{\Phi}(\Phi^{-1}(\mathbf{x}) - \Phi^{-1}(\mathbf{x}_{tar}))$$

Stable Vector Fields in Manifolds

 To represent Stable Vector Fields for Orientations, we require to represent vector fields in non-Euclidean manifolds

Stable Vector Fields in SE(3) (Position + Orientation)

Diffusion Models in Robotics

Niklas Georgia Julen Funk Chalvatzaki Urain

 Diffusion models are perfect candidates to represent dense and smooth cost functions in trajectory optimisation.

- Diffusion Models propose learning a function $\mathbf{s}_{\theta}(\tau)$ that represents the score function of a data distribution $\mathbf{s}_{\theta}(\tau) = \nabla_{\tau} \log q_{\mathcal{D}}(\tau)$
- Then, we can run an inverse diffusion process to generate samples from $q_{\mathcal{D}}(\tau)$ $\tau_{k-1} = \tau_k + \frac{\alpha_k^2}{2} \nabla_{\tau} \log q_{\mathcal{D}}(\tau_k) + \alpha_k \epsilon \quad , \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Note that if we substitute $\log q(\tau_k) = \sum_k c_k(\tau)$ then, we have a gradient-based trajectory optimiser.

6D-Grasp Diffusion Models for joint grasp and motion optimization

Niklas Georgia Julen Funk Chalvatzaki Urain

 We learn a diffusion model representing a distribution of SE(3) grasp poses for a variety of objects

$$f_{\theta}(\mathbf{H}) = \log q_{\mathcal{D}}(\mathbf{H}) \quad , \quad \mathbf{H} \in SE(3)$$

6D-Grasp Diffusion Models for joint grasp and motion optimization

Niklas Georgia Julen Funk Chalvatzaki Urain

 We combine the learned grasp diffusion model with heuristic costs(obstacle avoidance, joint limits...) and generate trajectories to solve complex pick and place tasks

Learning smooth cost functions for complex tasks

An Thai Georgia Chalvatzaki

Julen Urain

We apply similar approaches to learn more complex behaviours such as pouring and combine it with additional cost functions

2. Inductive Bias

Robotics Inductive Bias

Temporal smoothness of action sequences

Inferring smooth control

Joe Watson

- Every good roboticist knows that robots like smooth actions, but this is hard to achieve in settings such as sample-based model predictive control.
- How can we achieve this?
 - **Filter** the actions introduces delay!
 - Sample smoothed noise won't preserve smoothness!
 - Movement primitives requires handcrafted features!

Inferring smooth control

Joe Watson

- When using REPS, our update looks like a Bayesian posterior $q(\theta) \propto \exp(\alpha R(\theta) p(\theta))$, which we call a 'pseudo'-posterior
- In the context of MPC, we are optimising an open-loop action sequence $A = [a_1, a_2, a_3, ...]$
- To encode smoothness we can design a continuous-time Gaussian process (GP) prior, $p(a \mid t) = \text{GP}(\mu(t), \Sigma(t))$
- REPS-style optimization can be implemented as inference on the GP, with Kalman filter-like updates each time step

Inferring smooth control

Joe Watson

 This approach scales to high-dimensional MPC and dramatically changes the solution

Outlook

Learning State Representations for Robotics

Robot Engineering

Inferring
Hybrid Control
From Data

Tactile Skill Libraries

Automated Stability Proofs

Self-Paced Robot Reinforcement Learning

SELF-PACED CONTEXTUAL REINFORCEMENT LEARNING (SPRL)

Pascal Klink, Hany Abdulsamad, Boris Belousov, Jan Peters
Intelligent Autonomous Systems, TJ Demostadt

SPARSE BALL-IN-A-CUP TASK

(Learning) Control for Table Tennis

Sample Efficient Off-Policy Gradients

Generalized
Mean
Estimation
with MCTS

Imitation of Race Car Drivers

Learning Abstract Strategies independent of the Task Domain

Stochastic Optimal Control by Approximate Input Inference

Machine Learning Multi-Objective Reinforcement Learning

96

Human-like Experience Reuse

Human Ball Catching

(Boris Belousov @ NeurIPS)

Spiking Neural Models

Human
Motor Control
& Cognitive
Science

(Daniel Tanneberg @ Neural Networks)

Human Intent Prediction

(Dorothea Koert @ R-AL/IROS)

Trajectory Similarity Measures

Robot Beer Pong

Demonstration of Pouring

Robot Pouring

Robot Beer Pong

Demonstration of Pouring

Robot Pouring